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1. Introduction

We shall consider in this paper regular functions in the unit disk Izi < 1
which have the normalized power series development

(1) f(z) = z + a~s + . . . + az + . ..

and whose boundary rotation is bounded by the number

(2) ka.

It is well known that for 2 •• k • 4 the functions f(z) are univalent [1].
We denote the class of functions in question by Sh.

In a preceding paper, we developed a variational method to solve
extremum problems within the class Si [2]. It was shown that an extremum
function f(z) with maximal real coefficient a. must satisfy the differential
equation

(+ zf'(z) G.(z)

3'(z) - g.(z)

where

Gn(z) = -+5 ± v z'- + n(n -- l)a.,

(4)V= 
I

.- I .a, n-I

g.(Z) = Z'-- ,a,'

From this condition we deduced that the extremum function maps the
unit disk onto a polygon with N corner points with

(5) 2 <N ý 2n- 2.

On the other hand, the Poisson-Stieltjes representation for the functions
of the class Si reduces in the case of such a polygonal mapping to the form

zfo(z) N z, + z
(6) +'"z) - -,_, z,- .

This work was mupportod in part by Air F'oree Contract AF 49 (638) 1345 at
Stanford University.
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Here the points zi (i =I . . . , N) are the pre-images of the corner points,
and x', is the angle of change of direction between the two sides which
join at that corner. It was shown in [2] (formula (71) ) that in the extremal
case we have

N

fy2v = 2.

(7) •Iv, - k.

Let us combine the representations (3) and (6) for the extremum function
and write

".r(z) .(z) U2-2 Z, + Z

(8) 1± M Z - z

Here the z, are n~ow the roots of the equation

(9) g.(z) = 0

The pre-images z, are amiong the roots. If N < 2n - 2, the equation
(9) ham also roots which do not correspond to actual corner points of the
polygon. We call these roots free roots. In order to satisfy the identity
(8), we must define

(10) y, = 0 if z, is a free root.

Observe that with this definition we can replace (7) by
2--2 2x-2•01) ~y.v = 2, y.vl k.2,,-! 2,1-

(1V1)

From the identity (8) we can derive relations between the roots of
equation (9) and the coefficients of the extremum function. Indeed, using
the definitions (4), we find

rn-I

G,(Z) - zg'(z) - ng.(z) n(n - I)a. + 2n ,=,
(12) g,,(z) rn-I va, r-I

; w:: - '1

n(n -- )az"'- + 2n d'zU-1-"

= n(n - l)a,,z-'+ (z").
1 + 2alz+...

On the other hand, from the definition (4) of g,(z) we can express the
rational function in terms of its roots and write
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1 2n-2

(13) g.(Z) = -- = T- (z-- Z.).

Hence

g,(z) 2-2 2n-2 z + Z

Sg.(Z) . -IZ - z' ,-I, ( - z

and inserting this identity into (12) we find by virtue of (8):

(14) - z z- -n j + V()i vl W - n
(14) g(z) gn(z) Z,- z

2.- 2 z 2- 2 • ( ,)=I(I+ ,) - I (I+ Y) •

P1i• ' Z =I P1

Comparing the expansions (12) and (14) we find the following equations:

()1 e.= 0 (,= 1,2,.. n,, - 2),

=t n(n- a.

Moreover, we read off from equations (13) and (15) that

2n-2

(16) - z, = -I1

(cf. formulas (142) and (143) of [2]).
The numbers 1 + y, can be estimated by aid of (11). We denote the

positive and negative jumps y, by A, and - A-, respectively (A+,

,- ;=> 0). For them (11) yields

k k

I + A+ _2 + -, I -J A- 2- -.2 2

Hence
k k

(17) 0•_:2- 2 - - 1I + ;S 2 ±+ -

If N = 2n - 2 or N = 2n - 3, all the roots :, lie on the unit circum-

ference (zI 1) and we conclude from (15), (17) and (11):
1 2.-2 2

(18) a!n(n - 1- (1 +y,) -- -<1 for nŽ-4.

- I).-i p -
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Since we know that the maximum value of I a. I in the class S, is larger
than Ifor k>2, weseethatthecases N=2n- 2 and N= 2n-3
are excluded. In the case n = 4, which will now be discussed in detail,
we may thus assume that N • 4.

2. Direct estimation

From now on we shall deal with the problem of maximizing the fourth
coefficient a4 which may be assumed positive whithout any loss of gene-
rality. We may then restrict ourselves to discuss polygons with N = 2,
3 and 4 corners.

Let us denote the roots of g,(z) = 0 by

Zl I Z2, I , Z3 , , 4 -I •

In the case N =4 we are interested only in the case where
zI#1, fz,~ •1

16

The structure of g4(z) implies that with any z also -: is a root ofz

g4(z) 0 0. Hence, we may denote

1 1
(19) z 5 =re,' ei

In the case N = 3 we may assume zs and z. to have the same form (19).
If z4 is a free root of the equation g4 (z) = 0, it still must lie on the unit
circumference as can be seen from equation (16).

Hence, in both cases N = 3 and N = 4 we may suppose the form
(19) for the last two roots and write

(20) z,- =e', ---- ei,, z. - e'"s, z, = e'q,.

However, for N = 4 we have

(21) Y1, Y2, Y3, 74 : 0; A 76 ý 0; N--4,

and for N = 3

(22) l, ys, y3 91 0; y4 =r 5 =y6-- =-0; N-=-3.

We introduce the abreviation

(23) ,--+ ,Ž0 (v-=---1,2,...,6)

(cf. (17)) and write the equations (15) in the case n = 4 in the form
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(24) -1 + -- + ± + "- =-l + )e-","
Z 1 Z2  Z3  Z4  r,

1491 z1- + 2 h z+ 3 +z 4 =-r ~,

(26) 12a,, = A- + -3 + -3 + -•+ r + 3 e-,
ZA Z2 z 3 Z 4  +,

We deduce from (25) and (11) the estimate

1 4 4
(27) r2 + 4 + E y,=6.

Hence, we infer

(28) r +-r + ±2 -8

This leads to the estimate

(29) ra±• (r+ ?)(r + 1- 510 V2.

Thus, finally, we find the following inequality for a4 by using (26):
4

12a, :E 6, ±+ 1 Vi2= 6 + 10 V2;

that is,

(30) a, 5 I + 3•V'2 < 1,6786.

On the other hand, consider the case N = 2. The extremal function
is, in this case, easily determined (see Section 8). One finds for its fourth
coefficient the expression

V+±8k
(31) a 4 = 24

This value for a4 exceeds the upper bound (30) as long as

(32) 2, 67 < k < 4.

Thus, as long as the boundary rotation satisfies the inequality (32), we are
sure that the maximum for a4 is achieved in the case N = 2 and that
a4 I has the upper bound (31) for all functions of the class Sj.

Our aim is to prove that N = 2 yields the extremum function even
for 2•k 4.
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P A sharper estimate
Multiplying both sides of (24), (25) and (26) by e'r, ei" and e'w, res-

pectively, we obtain

1 4(33) r + -•••

r V-1

1 4
(34) r

41
(35) + ~e~~63 ra

with

eiT"

(36) C" , -- = e•" (P-- ,2, 3,4).

From
1 4

r + = - : 6,CosX,

1 4(37) r2÷ - = - :E 6, cos 2x,,

4

we deduce

(38) 66- (±+ =j•a,(1 + cos 2xj= 2  •, cos2 x,.
P-1

We apply the Schwarz inequality

4 4 4 4

(39) 
2 ~6csx ~ sX.

and see that

Rearranging, we find

(40) r' + < 4
, •--
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and since

r + =r2+ + 2_< 6

we get
1(41) r +r"
r

This leads to

(42) r3 + r + r2 + 1 3 N4

and thus we derive from (35) the estimate

6 + 3V'6
(43) a- 12 :½+ Vf3 < 1, 11238.

This bound lies under the value (31) as long as

(44) 2,129692 < k ! 4.

Thus the estimate (31) for a, is valid in this larger interval.

4. Discussion of the Inequalities

It is clear that the bounds (40) and (41) cannot be improved. Indeed,
the inequality sign entered in these estimates only through the use of the
Schwarz inequality, and this inequality is sharp if we choose all four values
of cos x, to be equal. When selecting

1
(45) cos X,= -/7 (v=1,...,4)

we see that (37) leads to the above upper bounds.
It should be observed, however, that our estimates were all based on

the three conditions (33), (34) and (35) and that until now we have not taken
into account the additional requirement (16).

We wish to show that the cases N ý 3 and N = 4 can never lead
to the actual extremum function. To show this, we have only to show that
the necessary extremum conditions can not be satisfied if

1
(46) r3 +- >6 and a 4 >1,

since we know that the a4 given by (31) has always larger value than 1.

I I I I- I • I 4
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We set up
1

(47) Cosx, -- F- , (= 1,2,3,4)

and will show that the r, must be small if (46) shall hold. In this case,
we will show that condition (16) will be violdted. Thus we will exclude
the possibility of N 3 or N = 4 for all k and show that (31) is the
precise bound for la4 ! .

We denote
1

(48) + -r>- 2.

By (33) we have
4 4

(49) 8-= - 6, cosx, A/6-

The central role in our estimation will be played by the quantity
4

(50) C 6,•,

In view of (49) we have

(51) c = V -8 /6-- 2.

From (34) we can then deduce the chain of equalities
4 4 4

2 - a' 2 6,. cos 2x, = 2_ Y6, cos2 x, - , 6.

= 2 ,, ••,, .1 -
v=1 A1- 2 15 6,(= ;;7•-- -- 6

whence
4 4

(52) 82 = 6 + c - 2 ,>
,7 =1

Inserting on the left the value of a given by (51), we obtain

4 4

6- 2V\6cc'=6 + c-c--2 6'E

and
16 4

(53) c 0 c +2 2: E,.
.=]
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We see that c is non-negative and can complete the estimate (51) to

(54) 0 cE- C•vV - 2.

Moreover, we can estimate

4 8
(55), _ 6'c < i .

This shows that the smallness of c will imply the smallness of all deviation
terms Er

As stated above, we can assume without loss of generality that

1
(56) r 3 + - > 6.

In view of (51) we have

(57) r3+ = r + -- r+ 83-3,9

= 3 V6 - 15 c + 3 V6c2 -C2

Thus we obtain from (56) the inequality for c:

(58) y(c)-= 3/6 - 6-- 15c+ 3V6 ca--Ca> 0.

We need only to consider those values of c which lie in the interval (54).

There y(c) is a monotonic function of c and calculation shows that
y(ll-) > 0, y(0,09418835) < 0. Thus (58) yields the limitation for c:

(m9) 0 :5 c < 0,09418835.

To be sure, we start with an accuracy which finally appears to be unne-

cessarily great to obtain the final contradiction.

5. An Improved estimate for c.

We will now improve the bounds for c by using the second part of

assumption (46), that is, a 4 > 1 . We start with (33) in the form

4 1
(60) Re {12 (14 e'3',} - 6, cos 3x. - r+ -+

r3&
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The first right-hand term cal be transformed as follows:

4 4

S6, cos 3x, = 6,[4 cos3 x, - 3 cos x,]

4 4
=--3 • 6, cos x, + 4 • 6, cosPx,

-3 /6- 3c + 4 6,, - -+ ,,

7 4 4

- /•-6-c- 2 V/6 Y 6,E3.4 6,.
3

By use of (53) we can replace

4 16
2 V,6= C - C

2

and find

4 7 / 4(61) 6, cos 3x, =-3/6- 17 c+ -% C2 4
3 l,*=1

Inserting this equation and (57) into (60) we get

16
(62) R= Re{12a.e'}--- Ve6-- 32c+-4,/6(- ÷ 4 4 V.

In order to discuss next Im {12 a4 e"3 } we observe that by virtue of (33)
and (34) we have

4 4

(63) 6, sil x, = 6, sin 2x, = 0.

Thus
4

1 Im (12 a4 e i3} 6, (4 cos2 x, - 1) sin x,

=4 6, cos2xsinx,= 4 "S .sx, + 6Silx

4

= 4> 6, sin x,.F.

Hence by use of (55) we find

4 32
(64) jI 4 6C2< _ .

, V'6

I -
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Now we know that we can assume in our investigation

1 12 a4eir 12 =  t J + 12 > 144.

Hence we have a fortiori the estimate
/32 \2

(65) R2 + 32 c/> 144,

that is,

(66) Rf1±( 32 c)ji> 12.

According to (59) we have an upper bound for c, and therefore:
32 32
- -c < < 1,230472.

By (65) this implies the lower estimate for R:

R 2 > 144 - 1,2304722> 142,4859.

Thus (66) yields

/32 \2 1 1
R I I ___- - I > 12U\1 + \1

101/ 42,48591

and we end up with the lower bound

(67) R > 11,93674.

Insert this estimate into (62) and find the inequality

16 4

(68) 3 6- 11,93874.

There remains still the problem to replace the sum on the left side by
terms depending only on c. By means of (55) we get

4 4 8
(69) =• 6,d, max lrj=,e-max Ie. I .

Furthermore, we have
V8

whence

(7() max EI •i 6 C
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To find min 6, we observe that we may restrict our attention to the case

(71) 2 • k :5 2,129692.

In view of (17) we have hence
2,129692

(72) mrin 6, 2 2 0,935154.

Thus by use of (70) we obtain finally

(73) maxieI -'0,935154 ($, ")'*

We combine this with (69) to derive from (68) the inequality for c:

16
(74) z(o) =•3 %/6 - 11,93674 - 32 c

4 /8 3/2

NV'0,935154' \Vc6 ) 4V 0c- >0 .

It is easy to verify that z(c) is a monotonically decreasing function of C
in the interval (59). We compute that

y(24- 1) > 0 but y(0,04244641) < 0.

Thus we conclude that c cannot exceed the upper bound of the improved
estimate

(75) 0 • c < 0,04244641.

If we substitute this estimate into (73), we find

(76) < &, < 0,3850227.

6. The use of condition (16).

The necessary condition (16) which has not yet been used reads in the
case t = 4 as follows

(77) ZI. zs Z . z-zs Z3 - Z4 -1.

With the rotation (19) and (36) this can be expressed in the form

(78) ein" + X. + . .a J- - 6iq

or equivalently
4

(79) x,= 6T + (2n + 1) (n 0,± 1 ... ).
.- 1|
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We have to prove that this necessary condition cannot be fulfilled under
the assumptions (46)

We begin with an estimate for T. We use (64) and (75) to obtain

32 32. 0,04244641

8Vo 2,129692 <0,6377848.

Since I = 12a4 sin 3T this implies

0,6377848 0,6377848
sin <3[ < 1 a4  < 0,05314874;12 a,,1

here we used again our assumption a4 > 1. We thus proved the
inequalities

< 0,0531738

and

(81) 64T < 0,1063476.

We introduce the angle x0 by the conditions
1

(82) cosx0 =-- , 2< o

Since by (76)

cos x, =cosxo+r,-,l+<0,3850227 (v 1,...,4),

we know that the points x, lie on the marked arcs A and .- around the
points x, and - x0 in Figure 1. Since

S6, sin x, = 0

it is impossible that all numbers sin x, have the same sign. Thus in each
arc A and J must lie at least one point x,. There are three possible
cases to be distinguished as is shown in Figure 1. We denote the angular
deviation of x, from the points x0 or - x, in the arc A and .1 ,res-

pectively, by ij,. Thus we have the cases:

1X i= Xo+ lh IXi X0 o+ ni ° i= Xo÷+P1
10 Ixx = xO + 1'2 201X X0 + 112 3 V - xO + 1'2

Xi- = Xo + 3 Ix3 = - Xo + 3  X3 =--Xo +13
x4 = -- zo + 74 X4= -- X + 114 X4 = Xo + 114•
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-4 A zx A
2a -72 X,

Xe 2. Xe5
2_ XG

I X4 X, A Xs3X4

1' 2' 3-

Figure 1.

Condition (79) takes different forms in the three cases; we find
4

1P , + 2zo- 6T= (2n + 1)r,

(84) 20 r i, - 69 = (2n + 1) 7r,

4

30 1 -- 2xO--6T=(2n+1)a.

From definition (82) we find

1,991330 < xo < 1,991331
(85) 3,982660 < 2xo < 3,982662.

We proceed now to estimate 1 7, f by use of our knowledge of the e,. Since

x,+Xo . x,--Xo
e, = cos x, - cos x - 2 sin -'- sin -- ----

2 2

we find

( 8 6 ) , 2 s i n X - -- X s i n -- --

82 2

Observe that x -- xO i-, if x, lies in A and x,-+-x.=3, if x, lies
in A . Denote

1
cos . - - - 0,3850227

and find

(87) • < 2,4869590.

I mm
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Thus
Thus x0  xo + a 1,991331 + 2,4869590

sin si -- f > sin - -i--- >0,7848460.
2 2

By use of this estimate we deduce from (86) the inequality

. 77, 1 E,1
(88) sin- < --- < 0,2452856

2 2- 0,784846

and arrive at the numerical bound

1),.
< 0,2478143.

sin x
Since - - decreases with increasing positive small x, we can assert

sin -s sin 0,2478143 0,2452855

0,2478143 " 0,2478143

Hence, using the estimate (88) again we arrive at

', 0,2478143 ij, 0,2478143 E._ I
2 0,2452855 2 0,2452855 1,569692

(89) I < K w, [ ith K ý 1,287272.

Now we use the Schwarz inequality to estimate X),, which occurs in
(84). We find by use of (72), (55) and (75):

4 4 4 4K 2 4

I min 6 ,

4K 2  8 4 1.287272"7. 8 • 0,04244641
C < - < 0,9825913.

- in 6, V6 0,9351539 - V6

Thus, ultimately we obtain
4

(90) I < 0,9912574.

For later use we can compute analogously

22 4

2

•=i *=1 ,
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Thus, by the same chain of inequalities, we find

21

(91), I < 0,9912574 < 0,7009249.
ýV2-

From (81) and (90) we see that in the case 20

4

]2n±+lI-r shouldbe •< ij,I-+ I 6T;< 1,098 (n-=-0,- 1, 2 .).

The equation (84) is thus impossible in the case 2' and we are reduced
to the cases V° and 3' . Since the signs of the i, and T are free, there
is no real difference between these two cases. We would have finished our
argument if we could show that equation (84) is impossible also in the case 10.

By (81), (85) and (90) we see that in the case 1V

4

1,098 > i I + 1 6V 1 I (2n + 1) -7 - 2x01

2n + 1 Ia - 2xo> ;2n+ I lIr-- 3,983.

This is impossible for n I 1 , 2 ..... .Similarly (84) in the case 1V gives
for n=-I,,-2 ....

1,098 > I 2n + 1 I r -+ 2xo > I 2n + I I r a+ 3,982

which again is impossible. Hence, the only alternative left is the equation
(84) in the case 1P with n= 0.

7. The final argument.

We have now to consider only one possible extremum case with N > 2.
In this case, the points x, , x. lie on the upper arc A while X4 lies on
the lower arc A of Figure 1. We are now able to obtain more specific
estimates for the numbers 64 and j ol4I which are connected with the
distinguished point x,.

From the equation (cf. (33))
4

6, sin x, = 0
*,=l

we deduce

64 sin a4' = 6,sin x, + 62 in x, + 6,sin x3.

Here (of. (87))

sin xi > sin > sin 2,4870 > 0,6088 (i= 1, 2, 3)
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and hence
6 > 0,6088 (61 + 63 + 63) 0,6088 (6 - 6,).

We find, therefore, the lower bound for 6.:

6 0,6088
(92) 4 1 - 0,6088 > 2,2705

Next, we shall improve our information regarding e4 . We start with
the equations (cf. (33), (34) and (47))

4 4

6, sinx, , 6, sin x, cosx,= 0,

I osx, = cos X +

They imply
4

(93) 6"E,. sin x, = 0.

From the definition (50) of c there follows

4
c sin x0 I 6,c, sin x,

and subtracting the equation (93) from this equation, we find

4 xo-x, ao+x,
(94) C sin = 6Fe, 2 sin o- Co 2

,•2 2

Since

Xo - X,. . Xo + X

e = cos x, - cos x= 2 sin 2 sn 2

we may bring (94) into the form

a 2 Xo + Xj

C sin xo = • 6.• cot - + d4e4 (sin xo - sin x4)

whence

3 XO + X
(95) 64f4 (sin xo - sin x.) 6-- - • 2 cot 2 ± C Bin Xo.

i=• 2

Now, since we are in the case 1P, we have

Xe "+ X.

sinfx. > 0, sin x, - sin x4> 0, cot <O(iý 1,2,3).

2-
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Thus we read off from (95) the important information

(96) >4 0 , 774> 0.-

We can utilize (95) also to find an upper bound for F4 . We get

(97) 64e4 (sin xo + I sin x4 I ) Cot --- + c sin x.

Clearly,

sin xo + I sin r4 I > sin x0 + sin o> 0,9125 + 0,6088 ý 1,5213.

From (92) follows then

64 (sin xo + I sin x4 I) > 2,2705 • 1,5213 > 3,4541

and (97) leads to

(98) 3,4541 F4 < 6,i cot 2 +csinx,

Next, observe that

co + ÷ x ot x± + c c o 1,9920 + 2,4870cot - i < !cot - -2 < 'cot 22 j< 2 2

< cot 2,2395 ! < 0,7902

and that
3 4 8

Hence (98) yields

3,4541 e < 0,7902 ± sin c
V6 I

< (8. 0,7992• 0,4083 + 0,9130) 0,0425 < 0,1486.

Thus we proved
0,1486

(99) 0 < -, < 3,- < 0,0431 .

By inequality (89) we can translate each estimate for -, into a corresponding
estimate for 114. We find

(100) 0 < 774 < 1,2873 0,0431 < 0,0555.

We are now in the position to dispose of the remaining condition (84)
in the case 1P for n 0. We write it in the form

4

(101) - 6 - 2.r, ÷- .

I I I i= I
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We distinguish the essentially different cases:

a) All iii (i 1, 2, 3) have the same sign.
b) Two iqj are non-negative, one is negative.
c) One ij, is non-negative, two are negative.

We begin with case a). We assume that all i•, are non-positive; the
case that they are all non-negative is treated in precisely the same manner.
In view of (93) we have

3

(102) &6,-i sin xi = 6,er 1 sin x4

By (17) and (71) we have the upper bound for 6,:

2,1297
6, : 2 + - < 3,0649.

Hence, by (99),
3

(103) b 6.ci sin x <. 3,0649 • 0,0431 < 0,1321
i=1

On the other hand , by (72)

t, sin xi > 0,9351 sin t > 0,9351 • 0,6088 > 0,5692.

Thus (103) gives

3

0,5692 i < 0,1321

From (S9) we then deduce

3 3 1,2873- 0,1321
< 1,2873 < - -0--.

0,5692

and obtain

3

(104) N, < 0,2988.

('ombining (81), (100) and (104) we get

4

(105) ii, + 6T !< 0,4607.
'--I

On the other hand,

(106) -2x, + n > 2x, -- r > 3,9826 - 3,1416 0,8410
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and thus, according to (101), the number

0,4676 should be > 0,8410.

Thus the case a) cannot occur.
We come now to case b): % < 0, 72, - 0, ,3 0. This implies E, > 0,

E2 0, cF:0. -- We write (101) in the form

(107) 2xo - :r + I, = 6q-.

From (89) and (76) we have the estimate valid for all i,:
4

(108) < < 1,2873 • 0,3851 < 0,4958.

Thus, since 2x, -- > 0,8410, we know that the left side of(107) is positive.
We have indeed the estimate

4
2Xo - r + • n,.> 0,8410 +- 0,4958 = 0,3452.

Because of (107) and (81) the number

0,1064 should be > 0,3452.

This excludes the case b).

There remains then the case c): )h Ž--- 0, 2 < 0, 1 a < 0. This implies
!--< 0, E2> 0, -3 >0. - Now we make use of (91) and find

(109) 12 1 + 13 1 < 0,7010.

Thus the left side of (107) is still positive and satisfies the inequality
4

2xo - n + I ij, > 0,8410 - 0,7010 = 0,14.
,-I

In view of (107) and (81) the number

0,11 should be > 0,14.

The last possibility has thus been excluded and we have shown that the
number of comer points in the extremal polygon is precisely X = 2.

8. The case N=2.

We have finally to discuss the case N 2 . Here we may derive from
(7) the information (suppose that V, > 0 , < 0):

(110) ,= -- 1, +' = - - 1

2 -• 2
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Hence by the representation formula (6) we find easily

f'(z) Y__ Y2
(11=) f'(z) - +

f 2Z) Z - Z Z2 -

where z, and z, are the pre-images of the corresponding corner points.
Integrating (111) and using the normalization (1), we find

(112) f '(z) na,,z"-' = I Z)Y

If we develop the right expression into a power series and compare the
coefficients of e on both sides, we obtain

(113) 24a4 = Y1 (•y + l)(y, + 2 )z -3

+ 3
Y1'2 [(;', + 1)z- 2z- + ('y + 1)zj- z-] + Y2(Y'2 + 1) (V2 + 2)z- 3.

Write this in the form

(114) 24 a4 Z = 71(y' + 1) (y, + 2)

+ 3 •172 [(71 + 1)t + (V2 + 1)t2] + 7'2(y2 + 1) (y2 + 2)t3

where

(115t ) --
Z2

Because z, = Z2 leads to the extremal case for convex domains, for which
aý 1 , we see that the right side of (114) assumes the value 24 for
I - 1. Thus we get

(116) 24 (a. z3 - 1)

- 3;'i/2 [(;'I" 1 ) (t - 1) + (Y2 + 1) (t2 - 1)] + Y'2(72 + 1) (y2 + 2) (tP - 1).

For brevity, write this in the form

(117) 24 (a 4Z3, - 1) = 72 0(t)

where

(118) 0,(t) = (t - 1) f 3y, [y,• + I + (y'2 + ) o+ 1)] +

(Y2 + 1) (Y2 + 2) (12 + t + 1)}

From (117) follows

(119) 24(a 4 ,- I) 4 ,y1 2 0(t)

We want to maximize the right side of ( 1N) and hope that the upper bound
for (14 ; thus obtained appears to he sharp.
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For brevity, write

(120) 0(t) = (t - 1) (a +bt + ct*)

where
7 k2

a= 12, + (y2 + 1) (y. + 2) = 182+ k +4

(121) b = 2(y, + 2)(Y2 + 1) 2 )

c =(y2+ 1) ,(2 + 2)= 2 - k (3 .

Because 0(t) •(t-), we obtain
l '(t) 12= ¢,t ¢(-

(2 - t t-1) [a2 + b2 + c0 + b(a + c) (t + t-1) + Ca(t2+ t-1)]

Define the new real variable

1
(122) u= 2 -- (t +t-1) ; 0<:ýu !<2.

In u we get

I 0(t) J2 = 2u [(a + b + c)2 - 2(ab + bc + 4a)u + 4cau".

Thus we have to maximize the function

1 q(t) 2

(123) 2 jv,(u) = Au + BU2 + CU3 ,

with

SA =(a + b + c)' = 36',I B - 2(ab + bc + 4ca) = - 36(4 - k) (10 + k),
(124) (

c= 4ca = (4- k) (6-k) -k+ 2 •

We have to show that t'(u) takes its maximum at u = 2 for all k-

values interesting us: 2 < k < 4. We compute:

p'(u) = A + 2Bu + 3Cu2.

A > 0. Let us show that the discriminant of the equation V,'(u) = 0

is negative; then 1'(u) cannot change its sign and our proof is finished.

Thus we must have
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(125) B 2 - 3AC < 0 ;

362(4 - k)2 (10 + k)2 < 3 362 (4 - k) (6 - k) 18 + -2 k + ±

This leads to

(126) 4(4- k) (10 + k) 2 < 3(6 - k) (72 + 14k + k2).

Let us here replace 72 + 14k + kV by its minimum value obtained for

k = 2, i.e., by 104. Thus we are lead to the more restrictive condition

(127) (4--k) (10 k)2  72(6 - k).

Rearrange and find

V4+ 16k 2- 52k + 32 • 0;

(128) (k - 2) (k2 + 18k - 16) >_ o0.

Hence there remains only to show that

(129) V + 18 k - 16 L- 0

for 2 < k < 4. This quadratic expression is negative for k = 0, but

already for k - 2 it has the value 24 and it remains positive for k > 2.

Hence we proved (129) and since the order of our conclusions can be

reversed from (129) to (125), we have shown that

(130) max y,(u) = V,(2) = 2(A + 2B + 4C) = 2(12 + 2k + k2)2 .

Hence

max ;0(t) j 24 + 4 k + 2 k

and from (119) we obtain the condition

P3 + 8k
Sa4 - 24

The equality is true only if u = 2, which means

Z,t- •--1.
z2

Our result, which generalizes a theorem for the real class S[3] , is thus:

Theorem. In the class 81 (2 _< k • 4) of univalent functions with

bounded boundary rotation, the coefficient a4 satisfies the inequality

k-3 + 8k
24



26 Ann. Acad. Sci. Fennica, A. 1. 396

The extremum functions are
+ [{ tTZ k/2 ]

,)= I\t :-- -II (IrI= -).
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